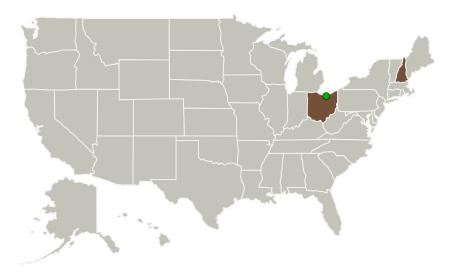
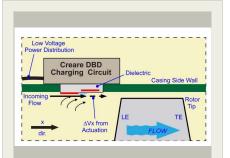
A Novel Plasma-Based Compressor Stall Control System, Phase I



Completed Technology Project (2013 - 2013)


Project Introduction

Modern aircraft gas turbine engines utilize highly loaded airfoils in both the compressor and turbine to maximize performance while minimizing weight, cost, and complexity. However, high airfoil loading increases the likelihood of flow separation at lower mass flow rates. Dielectric Barrier Discharge (DBD) plasma actuators have been shown to be a very promising technique for compressor stall control. DBD devices can either be installed directly on rotor/stator surfaces or the compressor end walls to control rotor tip flow. A fundamental challenge in driving DBD actuators is providing appropriate electrical waveforms to the devices. Creare proposes the development of an innovative DBD actuator charging circuit topology which enables (1) low voltage DC power distribution, (2) a modular approach to achieving total power delivery, (3) use of commercial-off-the-shelf (COTS) components, and (4) resolution of impedance matching issues associated with other DBD charging circuit topologies.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Creare LLC	Lead Organization	Industry	Hanover, New Hampshire
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

A Novel Plasma-Based Compressor Stall Control System

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	
Technology Areas	
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

A Novel Plasma-Based Compressor Stall Control System, Phase I

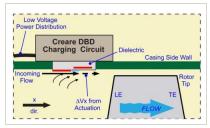
Completed Technology Project (2013 - 2013)

Primary U.S. Work Locations		
New Hampshire	Ohio	

Project Transitions

0

May 2013: Project Start



November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140370)

Images

Project Image

A Novel Plasma-Based Compressor Stall Control System (https://techport.nasa.gov/imag e/132611)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Creare LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

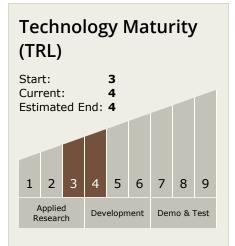
Carlos Torrez

Principal Investigator:

Richard W Kaszeta

Co-Investigator:

Richard Kaszeta



Small Business Innovation Research/Small Business Tech Transfer

A Novel Plasma-Based Compressor Stall Control System, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- - TX15.1.5 Propulsion Flowpath and Interactions

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

